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LETTER

Take a deep breath: Multiecho fMRI denoising
effectively removesheadmotionartifacts, obviating
the need for global signal regression
R. Nathan Sprenga,b,c,1, Sara Fernández-Cabelloa,d,e, Gary R. Turnerf, and W. Dale Stevensf,1

Power et al. (1) provide convincing evidence that
multiecho independent components analysis (ME-ICA)
effectively differentiates blood oxygen level-dependent
(BOLD) from non-BOLD, or artifactual, signals in func-
tional MRI (fMRI) data. Critically, ME-ICA removes spu-
rious, distance-dependent effects caused by head
motion in resting-state functional connectivity (RSFC)
analyses, which have confounded many group stud-
ies. However, the authors also argue that ME-ICA
unmasks persistent BOLD-related global signal corre-
lates, attributed to “motion-associated” effects of res-
piration, and conclude that removal of this global
signal by some means is necessary. Among other ap-
proaches, they recommend implementing global signal
regression (GSR) following ME-ICA. To the contrary, we
argue that there is no definitive evidence to date that
respiration effects dominate, or even substantively con-
tribute in any confoundingway, to residual global signal
following ME-ICA, and that GSR is ill-advised.

In their figure 2B, Power et al. report a correlation
of 0.59 between variance in mean global signal and
variance in respiration in ME-ICA–processed data
from 12 participants, prior to GSR. However, the con-
clusion that respiratory effects are a primary source
of the BOLD-related global signal is not empirically
substantiated.

The methods reported by Power et al. describe
only 12 participants with respiratory data, while their
figure 2B depicts scatterplots with 19 data points: 2
scans were included from 8 of the participants, 1 scan
was included from 3 of the participants, and data from 1
participant were excluded. Including repeated obser-
vations from a subset of participants is a statistically
invalid calculation of a Pearson correlation coefficient
(2). Moreover, this sample is underpowered for exam-
ining brain–behavior associations (3, 4). Even granting
their reported correlation of 0.59 suggests that respiration

accounts for about 35% of the variance in global signal,
leaving a significant majority of variance unexplained.
There is evidence that respiration can be significantly
correlated with neural activity, although arising from
different mechanisms (5). Thus, applying GSR post–
ME-ICA potentially removes a substantial proportion
of variance, not directly caused by respiration, that
might carry signal dynamics of interest.

As the authors acknowledge, there is compelling
evidence that GSR can distort correlation patterns in
RSFC analyses (6–8), although this likely depends on
multiple factors (9), including the unknown dimension-
ality of fMRI data (10). Despite these potentially detri-
mental effects of GSR, and the existence of arguably
better, more targeted multivariate denoising ap-
proaches [e.g., Go Decomposition (GODEC) (1) or
temporal ICA (5)], the authors recommend GSR imple-
mentation following ME-ICA as a viable method of
denoising resting-state fMRI data.

The primary results fromPower et al. are encouraging—
ME-fMRI combined with ME-ICA processing effec-
tively removes the confounding effects of head motion
and other spurious sources of noise from fMRI signal.
However, the conclusion that BOLD-related global
signal is primarily caused by respiration is not sub-
stantiated. While some amount of respiration-related
noise may remain in ME-ICA–processed data, the ex-
tent to which it contributes to the global signal, is
correlated with neural signals of interest, and/or po-
tentially confounds group analyses is unknown. Con-
trary to the authors’ recommendation, we discourage
implementation of GSR following ME-ICA.
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